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0.- Introduction

A celebrated Theorem of C. LePage [12] reads as follows.

(1) If A is a complete normed associative complex algebra with a unit, and
if there exists a positive constant k satisfying ‖ yx ‖≤ k ‖ xy ‖ for all x, y in A,
then A is commutative.

Actually, minor changes on the proof of LePage’s theorem allow to show the
next more general result (see [2; Proposition 15.5]).

(2) Let A be a complete normed associative complex algebra with a unit e,
and � be a (possibly non-associative) product on A satisfying

1. x� e = x for every x in A, and

2. ‖ x� y ‖≤ k ‖ xy ‖ for some positive constant k and all x, y in A.

Then � coincides with the product of A.

In this paper we mainly deal with the natural question if the requirement
of associativeness in Assertions (1) and (2) above can be removed. For any
complex algebra A, denote by N(A) the set of those elements x in A such
that the spectrum of the operator of right multiplication by x is countable.
As main result, we prove in Corollary 1.2 that associativeness can be actually
removed in (2) (and hence also in (1)) whenever the linear hull of N(A) is
dense in A (for instance, whenever A is finite-dimensional). As an application
of the main tool for the above result, we also prove that associativeness can be
removed in (1) whenever A is either a nondegenerate non-commutative Jordan
algebra with essential socle (Corollary 2.5) or a non-commutative JB∗-algebra
(Corollary 3.5). In the last case, the existence of a unit for A is not required.
A discussion about the methods of proof for the above results leads us to find
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that associativeness can be relaxed in (2) to right alternativeness (Proposition
4.4), and in (1) to split quasiassociativeness (Corollary 4.9).

The concluding section of the paper is devoted to associative algebras. We
prove that the assumption in (1) that A has a unit can be drastically relaxed.
In fact (see Corollaries 5.2 and 5.3) Assertion 1 remains true if that assumption
is replaced by anyone of the following:

1. A2 is dense in A.

2. A has zero annihilator.

1.- The main tool

Given a complex Banach space E and a bounded linear operator T on E,
the Banach isomorphism theorem ensures that the spectrum of T relative to
the Banach algebra BL(E) of all bounded linear operators on E coincides with
the spectrum of T relative to the algebra of all (possibly unbounded) linear
operators on E. We simply denote it by Sp(T ). For an element x in an algebra
A, the symbol Rx will stand for the operator of right multiplication by x on A.
The main tool for our work is the following theorem.

THEOREM 1.1.- Let A be a (possibly non-associative) complete normed com-
plex algebra with a right unit e, E complex Banach space, h : A × A → E a
bilinear mapping satisfying ‖ h(x, y) ‖≤ k ‖ xy ‖ for some positive constant k
and all x, y in A, and z be in A such that Sp(Rz) is countable. Then, for every
x in A, we have h(x, z) = h(xz, e).

Proof.- Replacing z by z − αe, for a suitable α in C, we can assume that
o 6∈ Sp(Rz). Then K := {µ−1 : µ ∈ Sp(Rz)} is a countable compact subset
of C. Putting Ω := C\K, and considering the analytic mapping ϕ : Ω → A
given by ϕ(λ) := e − λz, we realize that, for every λ in Ω, the operator Rϕ(λ)

is bijective. If for y in A we denote by Ty the continuous linear mapping from
A to E defined by Ty(a) := h(a, y), then the assumption on h leads to the
inequality ‖ Tϕ(λ)(a) ‖≤ k ‖ Rϕ(λ)(a) ‖ for all λ in Ω and A in A. Equivalently,
we have ‖ Tϕ(λ) ◦ R−1

ϕ(λ)(x) ‖≤ k ‖ x ‖ for all λ in Ω and x in A, and hence
‖ Tϕ(λ) ◦ R−1

ϕ(λ) ‖≤ k for every λ in Ω. Now, let us fix an arbitrary continuous
linear functional f on the complex Banach space BL(A,E) of all bounded linear
mappings from A into E. Then the function Ψ : λ → f(Tϕ(λ) ◦ R−1

ϕ(λ)) from Ω
to C is analytic and bounded. Since Ω is the complement in C of a countable
compact set, it follows from an extended version of Liouville’s theorem (see for
instance [20; Exercise 10.(a), p. 324]) that Ψ is constant. As a consequence,
we have f(Te ◦ Rz − Tz) = Ψ′(0) = 0. Since f is arbitrary in the dual of

2



BL(A,E), the Hahn-Banach theorem yields the equality Tz = Te ◦ Rz, that is,
h(x, z) = h(xz, e) for every x in A. �

Let E be a vector space. By a product on E we mean any bilinear mapping
(x, y) → x � y from E × E into E. Given a product � on E and an element
u in E, we say that � is right u-admissible if the equality x � u = x holds for
every x in E. The next result is a direct consequence of Theorem 1.1.

COROLLARY 1.2.- Let A be a complete normed complex algebra with a
right unit e, and � be a right e-admissible product on (the vector space of) A
satisfying ‖ x� y ‖≤ k ‖ xy ‖ for some positive constant k and all x, y in A. If
the linear hull of the set

{z ∈ A : Sp(Rz) is countable}

is dense in A (for instance, if A is finite-dimensional), then � coincides with
the canonical product of A.

In the case that e is in fact a (two-sided) unit for the algebra A, the product
� on A defined by x� y := yx is right e-admissible, hence Corollary 1.2 applies
to get the next variant of LePage’s theorem.

COROLLARY 1.3.- Let A be a complete normed complex algebra with a unit.
If the linear hull of the set

{z ∈ A : Sp(Rz) is countable}

is dense in A, and if there exists k > 0 such that ‖ yx ‖≤ k ‖ xy ‖ for all x, y
in A, then A is commutative.

2.- Applications to Jordan algebras

Jordan algebras are defined as those commutative algebras satisfying the “
Jordan identity ” (x2y)x = x2(yx). Let A be a Jordan complex algebra with a
unit E. An element x in A is said to be invertible in A if there exists y in A
satisfying xy = e and x2y = x. The spectrum Sp(A, z) of an arbitrary element
z in A is defined by the equality

Sp(A, z) := {λ ∈ C : z − λe is not invertible in A}.

When A is complete normed we know that, for every z in A, the inclusion

Sp(Rz) ⊆ 1
2

(Sp(A, z) + Sp(A, z))

holds [13; Theorem 1.2]. Now, the next result follows from Theorem 1.1.
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COROLLARY 2.1.- Let A be a complete normed Jordan complex algebra
with a unit e, E a complex Banach space, h : A × A → E a bilinear mapping
satisfying ‖ h(x, y) ‖≤ k ‖ xy ‖ for some positive constant k and all x, y in A,
and z be in A such that Sp(A, z) is countable. Then, for every x in A, we have
h(x, z) = h(xz, e).

As a consequence, if A is a complete normed Jordan complex algebra with
a unit e, if � is a right e-admissible product on A satisfying ‖ x� y ‖≤ k ‖ xy ‖
for some positive constant k and all x, y in A, and if the linear hull of the set

{z ∈ A : Sp(A, z) is countable}

is dense in A, then � coincides with the canonical product of A.
For every algebra A, let us denote by A+ the algebra consisting of the vector

space of A and the product x.y := 1
2 (xy + yx). The algebra A is said to

be Jordan admissible if A+ is a Jordan algebra. An element x in a Jordan
admissible complex algebra A with a unit is said to be invertible in A if it is
invertible in A+. Consequently, for arbitrary z in such an algebra A, we put
Sp(A, z) := Sp(A+, z). The convention just established has its roots in the fact
that, if A is an associative algebra with a unit, then the invertible elements in A
(in the usual associative meaning) are nothing but the invertible elements in the
Jordan algebra A+ (in the sense provided at the beginning of this section) [10;
page 51]. Recall that, given a bounded linear operator T on a complex Banach
space E, the approximate point spectrum of T , σap(T ), is defined as the set
of those complex numbers λ such that there is a sequence {xn} of norm-one
elements in E satisfying limn→∞ ‖ λxn − T (xn) ‖ = 0. According to [1;
Theorem 57.7], σap(T ) contains the boundary of Sp(T ).

THEOREM 2.2.- Let A be a complete normed Jordan admissible complex
algebra with a unit, and z be in A such that Sp(A, z) is countable. Assume
that there exists k > 0 satisfying ‖ yx ‖≤ k ‖ xy ‖ for all x, y in A. Then z
commutes with every element in A.

Proof.- Let R+
z denote the operator of multiplication by z on A+. Then, for

every x in A and all complex numbers λ, we have

‖ λx−R+
z (x) ‖ = ‖ λx− 1

2
(xz + zx) ‖

≤ ‖ 1
2
(λx− xz) ‖ + ‖ 1

2
(λx− zx) ‖ ≤ 1

2
(1 + k) ‖ λx−Rz(x) ‖ .

Therefore σap(Rz) (and hence the boundary of Sp(Rz)) is contained in Sp(R+
z ).

Since Sp(A, z) (= Sp(A+, z)) is countable, it follows from the already known
inclusion

Sp(R+
z ) ⊆ 1

2
(Sp(A+, z) + Sp(A+, z))
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that Sp(Rz) is countable too. Now, we can apply Theorem 1.1, with E := A
and h(x, y) := yx for all x, y in A, to obtain that z commutes with every element
in A. �

An algebra A is said to be quadratic if it has a unit e and, for every x in
A, the subalgebra of A generated by {e, x} has dimension at most two. If A is
a quadratic complex algebra, then A is Jordan admissible and every element in
A has a finite spectrum. Therefore we have:

COROLLARY 2.3.- Let A be a complete normed quadratic complex algebra
such that there exists k > 0 satisfying ‖ yx ‖≤ k ‖ xy ‖ for all x, y in A. Then
A is commutative.

Among Jordan admissible algebras, the so called non-commutative Jordan
algebras become specially relevant. Non-commutative Jordan algebras can be
defined as those Jordan admissible algebras satisfying the “ flexibility condition
” (xy)x = x(yx) [21; p. 141]. Let A be a flexible algebra. Then, for every a in
A, the mapping x → ax − xa is a derivation of A+ [21; p.146], and therefore
the set

Z := {z ∈ A : z commutes with every element in A}

is a subalgebra of A+. Since Z is a commutative subset of A, it is in fact a
subalgebra of A. Now, Theorem 2.2 leads to the following corollary.

COROLLARY 2.4.- Let A be a complete normed non-commutative Jordan
complex algebra with a unit. If the subalgebra of A generated by the set

{z ∈ A : Sp(A, z) is countable}

is dense in A, and if there exists k > 0 such that ‖ yx ‖≤ k ‖ xy ‖ for all x, y
in A, then A is commutative.

Let A be a non-commutative Jordan algebra. For x in A, we denote by
Ux the operator on A given by Ux(y) := x(xy + yx) − x2y for all y in A. For
later application we note that, if x is in A, then the equality Ux = U+

x holds,
where U+

x means the Ux-operator relative to the algebra A+. A is said to be
nondegenerate if Ux = 0 implies x = 0. Vector subspaces I of A satisfying
UI(A) ⊆ I are called inner ideals of A. The socle of A is defined as the sum of
all minimal inner ideals of A. If A is nondegenerate, then the socle of A is a
(two-sided) ideal of A ([14], [6]).

COROLLARY 2.5.- Let A be a complete normed nondegenerate non-commu-
tative Jordan complex algebra with a unit and essential socle. Assume that
there exists k > 0 satisfying ‖ yx ‖≤ k ‖ xy ‖ for all x, y in A. Then A is
commutative.
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Proof.- By [7; Theorem 1], every element in the socle of A has a finite
spectrum. Then, by Theorem 2.2, the socle of A is commutative. Therefore, by
[5; Corollary 7], A is commutative. �

3.- The case of non-commutative JB∗-algebras

A celebrated theorem of I. Kaplansky [11; Appendix III, Theorem B] asserts
that a C∗-algebra A is commutative if (and only if) A has no non zero elements
z with z2 = 0. This criterion of commutativity for C∗-algebras is very powerful,
as shown in particular by the next LePage-type application.

OBSERVATION 3.1.- Let A be a (possibly non unital) C∗-algebra such that
there exists k > 0 satisfying ‖ yx ‖≤ k ‖ xy ‖ for all x, y in A. Then A is
commutative.

Proof.- Let z be in A satisfying z2 = 0. Then we have

‖ z ‖6 = ‖ z∗z ‖3 = ‖ (z∗z)3 ‖ = ‖ z∗zz∗zz∗z ‖ = ‖ (zz∗z)∗(zz∗z) ‖

= ‖ zz∗z ‖2 ≤ k2 ‖ z∗z2 ‖2 = 0 ,

and therefore z = 0. By Kaplansky’s theorem, A is commutative. �

The main aim in this section is to prove that the result in Observation 3.1
remains true if we relax the assumption that A is a C∗-algebra to the one
that A is a non-commutative JB∗-algebra. Non-commutative JB∗-algebras are
defined as those complete normed non-commutative Jordan complex algebras
A with a conjugate-linear algebra involution ∗ satisfying ‖ Ux(x∗) ‖=‖ x ‖3

for every x in A. Non-commutative JB∗-algebras arise in a natural way in
Functional Analysis. Indeed, if a norm-unital complete normed non-associative
complex algebra A is subjected to the geometric Vidav condition characterizing
C∗-algebras in the associative context [2; Theorem 38.14], then A is a non-
commutative JB∗-algebra [18]. Let A be a non-commutative JB∗-algebra. It
is known that the set Symm(A) of all *-invariant elements of A (regarded in the
natural way as a closed real subalgebra of A+) is a JB-algebra [8; Proposition
3.8.2]. The positive elements in the JB-algebra Symm(A) [8; 3.3.3] are called
positive elements of A. The next lemma is the key tool in the proof of the
desired LePage-type theorem for non-commutative JB∗-algebras.

LEMMA 3.2.- Let A be a non-commutative JB∗-algebra, M a closed ideal
of A, and λ be in C. Then, for x, y in A, we have

‖ λxy + (1− λ)yx + M ‖ ≤ inf{‖ λ(x + m)y + (1− λ)y(x + m) ‖ : m ∈ M}

≤ (| λ | + | 1− λ |) ‖ λxy + (1− λ)yx + M ‖ .
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Proof.- Let x, y be in A. Then, clearly, the first inequality in the statement
holds. To prove the second inequality, let us fix ε > 0. For elements u, v in any
complex algebra containing A as a subalgebra, we put

u�v := λuv + (1− λ)vu .

Then we can choose q in M with

‖ x�y + q ‖ ≤ ‖ x�y + M ‖ +ε .

We claim that there exists a positive element p in M satisfying ‖ p ‖≤ 1 and

‖ q − p�q ‖ + ‖ p�(x�y)− (p�x)�y ‖ < ε .

Since M is ∗-invariant [15; Corollary 1.11] (hence a non-commutative JB∗-
algebra), we can apply [8; Proposition 3.5.4] to the JB-algebra Symm(M) to
get a net {eλ}λ∈Λ of positive elements of M such that ‖ eλ ‖≤ 1 for all λ in Λ,
and lim{eλ.m} = m for every m in M (where, as usual, the symbol ”.” stands for
the product of A+). On the other hand, the bidual A∗∗ of A can be regarded as
a non-commutative JB∗-algebra which enlarges A [15; Theorem 1.7] and whose
product becomes separately w∗-continuous [15; Theorem 3.5]. Then the bipolar
M◦◦ of M in A∗∗ is a w∗-closed ideal of A∗∗, and hence we have M◦◦ = A∗∗e
for some central ∗-invariant idempotent e in A∗∗[15; Theorem 3.9]. Since e is a
unit for M◦◦, it follows from the separate w∗-continuity of the product of A∗∗

and the w∗-density of M in M◦◦ that e is the unique possible w∗-cluster point
of the net {eλ} in A∗∗. Since the closed unit ball of A∗∗ is w∗-compact, we
actually have that w∗ − lim{eλ} = e. Now, note that the product � on A∗∗ is
separately w∗-continuous, and regard the space A∗∗ × A∗∗ as the bidual of the
Banach space A×A with the sum norm. Then in A∗∗ ×A∗∗ we have

w∗ − lim{(q − eλ�q, eλ�(x�y)− (eλ�x)�y)}

= (q − e�q, e�(x�y)− (e�x)�y) = (0, 0),

where the last equality holds because e is a unit for (M◦◦,�) and a central
element of (A∗∗,�). Since the net {(q − eλ�q, eλ�(x�y)− (eλ�x)�y)} lies in
A × A, it follows that {(q − eλ�q, eλ�(x�y) − (eλ�x)�y)} converges to (0, 0)
in the weak topology of A × A, and therefore, for a suitable element p in the
convex hull of the set {eλ : λ ∈ Λ}, we have

‖ q − p�q ‖ + ‖ p�(x�y)− (p�x)�y ‖ < ε .

Clearly, such a p lies in M , is positive, and satisfies ‖ p ‖≤ 1. Now that the
claim is proved, recall that A∗∗ has a unit 1 [15; Corollary 3.3] which is also a
unit for (A∗∗,�), so that we can write
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inf{‖ (x + m)�y ‖ : m ∈ M} ≤ ‖ (x− p�x)�y ‖

≤ ‖ x�y − p�(x�y) ‖ + ‖ p�(x�y)− (p�x)�y ‖

= ‖ (1− p)�(x�y + q)− (1− p)�q ‖ + ‖ p�(x�y)− (p�x)�y ‖

≤ (| λ | + | 1− λ |) ‖ x�y + q ‖ + ‖ q − p�q ‖ + ‖ p�(x�y)− (p�x)�y ‖

≤ (| λ | + | 1− λ |)(‖ x�y + M ‖ +ε) + ε .

By letting ε → 0, we obtain

inf{‖ (x + m)�y ‖ : m ∈ M} ≤ (| λ | + | 1− λ |) ‖ x�y + M ‖ . �

Taking λ = 1 in the above lemma, it follows that, if A is a non-commutative
JB∗-algebra, if M is a closed ideal of A, and if x, y are in A, then the equality
‖ xy + M ‖= inf{‖ (x + m)y ‖ : m ∈ M} holds. In the proof of the following
lemma, M2(C) will denote the algebra of all 2 × 2 complex matrices endowed
with its natural structure of C∗-algebra (when it is identified with the algebra
of all bounded linear operators on the two-dimensional complex Hilbert space).

LEMMA 3.3.- Let A be a C∗-algebra such that there exist λ in C\{ 1
2} and

k > 0 satisfying ‖ λyx + (1 − λ)xy ‖≤ k ‖ λxy + (1 − λ)yx ‖ for all x, y in A.
Then A is commutative.

Proof.- Assume for the moment that A has a unit. If B denotes the complex
algebra consisting of the vector space of A and the product � given by x�y :=
λxy+(1−λ)yx, then the unit of A is a unit for B, and, up to the multiplication
of the norm of A by a suitable positive number, B becomes a complete normed
algebra. Moreover, since B+ = A+, B is Jordan admissible and, for x in A, we
have Sp(A, x) = Sp(B, x). Now take z in A such that z2 = 0. Since Sp(B, z) =
{0} and ‖ y�x ‖≤ k ‖ x�y ‖ for all x, y in B, it follows from Theorem 2.2
that z �-commutes with every element of B. Applying that λ 6= 1

2 , we find
that z commutes (in the usual sense) with every element of A, in particular
with z∗. Therefore we have ‖ z ‖4=‖ z∗z ‖2=‖ (z∗z)2 ‖=‖ z2(z∗)2 ‖= 0, hence
z = 0. Keeping in mind Kaplansky’s theorem, the proof would be concluded
in the unital case. However, since the consideration of the non unital situation
will need a refined version of Kaplansky’s theorem proved in [9], we remove
the incidental assumption that A has a unit, and limit ourselves to codify a
straightforward consequence of the above argument. Indeed, since the condition

‖ λyx + (1− λ)xy ‖ ≤ k ‖ λxy + (1− λ)yx ‖ for all x, y in A

is inherited by any subalgebra of A, and the C∗-algebra M2(C) has a unit as well
as non zero elements z with z2 = 0, A cannot contain M2(C) as a C∗-subalgebra.
According to [9; Corollary 9], to conclude the proof it is enough to show that
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A also cannot contain as a C∗-subalgebra the C∗-algebra C0([0, 1],M2(C)) of
all continuous mappings from [0, 1] to M2(C) vanishing at zero. Assume by the
contrary that C0([0, 1],M2(C)) is a C∗-subalgebra of A, so that the inequality

‖ λyx + (1− λ)xy ‖ ≤ k ‖ λxy + (1− λ)yx ‖

is true for all x, y in C0([0, 1],M2(C)). Put

M := {x ∈ C0([0, 1],M2(C)) : x(1) = 0}.

Since M is a closed ideal of C0([0, 1],M2(C)), we can apply Lemma 3.2 to obtain

‖ λyx + (1− λ)xy + M ‖ ≤ inf{‖ λy(x + m) + (1− λ)(x + m)y ‖ : m ∈ M}

≤ k inf{‖ λ(x + m)y + (1− λ)y(x + m) ‖ : m ∈ M}

≤ k(| λ | + | 1− λ |) ‖ λxy + (1− λ)yx + M ‖

for all x, y in C0([0, 1],M2(C)). Since C0([0, 1],M2(C))/M is isometrically iso-
morphic to M2(C), we deduce that there exists k′ := k(| λ | + | 1 − λ |) > 0
satisfying ‖ λyx+(1−λ)xy ‖≤ k′ ‖ λxy +(1−λ)yx ‖ for all x, y in M2(C). But
we have seen in the first part of the proof that such a situation cannot happen.
�

THEOREM 3.4.- Let A be a non-commutative JB∗-algebra such that there
exist λ in C\{ 1

2} and k > 0 satisfying ‖ λyx+(1−λ)xy ‖≤ k ‖ λxy+(1−λ)yx ‖
for all x, y A. Then A is commutative.

Proof.- As we have seen in the proof of Lemma 3.3, Lemma 3.2 implies that,
if M is a closed ideal of A, and if α, β are in A/M , then we have

‖ λβα + (1− λ)αβ ‖ ≤ k′ ‖ λαβ + (1− λ)βα ‖ ,

where k′ := k(| λ | + | 1− λ |). Now, the structure theory for non-commutative
JB∗-algebras (see [15; Lemma 5.3 and Theorem 5.4] and [16; Corollary 1.13
and Theorems 2.7 and 3.2]), together with the facts that quotients of non-
commutative JB∗-algebras are non-commutative JB∗-algebras [15; Corollary
1.11] and that injective *-homomorphisms between non-commutative JB∗-alge-
bras are isometries [23], provides us with a family {Mi}i∈I of closed ideals of A
(namely, the kernels of the so-called type I factor representations of A) satisfying
the following two properties:

1. ∩i∈IMi = 0 .

2. If, for i in I, the algebra A/Mi is neither commutative nor quadratic, then
the next situation occurs:
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(Si) There exists a C∗-algebra Ai such that A/Mi = Ai as involutive Banach
spaces, and the product of A/Mi is related to that of Ai (denoted by ◦, say)
by means of the equality αβ = µiα ◦ β + (1− µi)β ◦ α, where µi is a fixed real
number with 1

2 < µi ≤ 1.
Let i be in I enjoying the situation (Si). Putting

λi :=
1
2

+ 2(λ − 1
2
)(µi −

1
2
),

for α, β in A/Mi we have

λαβ + (1− λ)βα = λiα ◦ β + (1− λi)β ◦ α ,

and hence ‖ λiβ ◦ α + (1 − λi)α ◦ β ‖≤ k′ ‖ λiα ◦ β + (1 − λi)β ◦ α ‖ . Since
(Ai, ◦) is a C∗-algebra and λi 6= 1

2 , it follows from Lemma 3.3 that Ai is
commutative. Then the relation between the products of A/Mi and Ai shows
that both products coincide, and hence A/Mi is commutative too.

Now, let i be in I such that A/Mi is a quadratic algebra. If Bi denotes
the complex algebra consisting of the vector space of A/Mi and the product �
given by α�β := λαβ +(1−λ)βα, then, up to the multiplication of the norm of
A/Mi by a suitable positive number, Bi becomes a complete normed quadratic
algebra. Since the inequality ‖ β�α ‖≤ k′ ‖ α�β ‖ holds for all α, β in Bi,
it follows from Corollary 2.3 that Bi is commutative. Since λ 6= 1

2 , A/Mi is
commutative too.

From the last two paragraphs and Property 2 of the family {Mi}i∈I it follows
that A/Mi is commutative for every i in I. Finally, from Property 1 of that
family we deduce that A is commutative. �

COROLLARY 3.5.- Let A be a non-commutative JB∗-algebra such that there
exists k > 0 satisfying ‖ yx ‖≤ k ‖ xy ‖ for all x, y in A. Then A is commuta-
tive.

REMARK 3.6.- Non-commutative JBW ∗-algebras are defined as those non-
commutative JB∗-algebras which are dual Banach spaces. If A is a non-
commutative JBW ∗-algebra, then A has a unit [15; Corollary 3.3] and is the
closed linear hull of its *-invariant idempotents (indeed, Symm(A) is a JBW-
algebra [4], and [8; Proposition 4.2.3] applies). Since idempotents have a finite
spectrum, when A is actually a non-commutative JBW ∗-algebra Corollary 3.5
follows directly from Theorem 2.2. The same comment applies to Theorem 3.4
(indeed, apply Theorem 2.2 to the algebra obtained by replacing the product of
A by the one (x, y) → λxy +(1−λ)yx). It is also worth mentioning that, if A is
a (commutative) JBW ∗-algebra, and if e denotes the unit of A, then, by Corol-
lary 2.1, every left e-admissible product � on A satisfying ‖ x� y ‖≤ k ‖ xy ‖
for some positive constant k and all x, y in A must coincide with the canonical
product of A.
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4.- Discussion of results and methods

Let us recall the main question we have dealt with.

PROBLEM 4.1.- Let A be a complete normed complex algebra with a unit,
and assume that there exists a positive constant k satisfying ‖ yx ‖≤ k ‖ xy ‖
for all x, y in A. Must A be commutative?

More ambitious questions are the following.

PROBLEM 4.2.- Let A be a complete normed complex algebra with a right
unit e, and � be a right e-admissible product on A satisfying

‖ x� y ‖≤ k ‖ xy ‖

for some positive constant k and all x, y in A. Does � coincide with the canon-
ical product of A?

PROBLEM 4.3.- Let A be a complete normed complex algebra with a right
unit e, E a complex Banach space, and h : A × A → E a bilinear mapping
satisfying ‖ h(x, y) ‖≤ k ‖ xy ‖ for some positive constant k and all x, y in A.
Does the equality h(x, y) = h(xy, e) holds for every x, y in A?

According to LePage’s argument and the results in this paper, the answer
to Problem 4.3 (and hence also to Problems 4.2 and 4.1) is affirmative if A is
either associative or finite-dimensional. Therefore, most probably, the answer
must remain affirmative without any additional requirement. Actually, LePage’s
argument and our techniques share a common idea, which we explain in what
follows.

Let A be a complete normed complex algebra A with a right unit e. For z
in A, consider the following property

(Pz) There exists a couple (Ω, ϕ), where Ω is the complement in C of a
countable compact set such that 0 ∈ Ω, and ϕ : Ω → A is an analytic mapping
satisfying:

1. ϕ(0) = e.

2. ϕ′(0) = z.

3. The operator Rϕ(λ) is bijective for every λ in Ω.

Then, looking at the proof of Theorem 1.1, we realize that (Pz) holds whenever
Sp(Rz) is countable and 0 6∈ Sp(Rz), and that Problem 4.3 has an affirmative
answer whenever A is the closed linear hull of the set

{z ∈ A : z satisfies (Pz)}.
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Thus, Problem 4.3 answers affirmatively in the finite-dimensional case. If A is
associative, then Problem 4.3 answers affirmatively because every element z in
A satisfies the improved version of (Pz) given by

(P∗z ) There exists an analytic function ϕ : C → A such that ϕ(0) = e,
ϕ′(0) = z, and the operator Rϕ(λ) is bijective for every λ in C.

Indeed, when A is associative and z is in A, the analytic mapping ϕ : C → A
defined by

ϕ(λ) := e +
∞∑

n=1

λn

n!
zn

satisfies all the requirements in (P∗z ) (note that, thanks to the equality Rϕ(λ) =
exp(λRz), Rϕ(λ) is certainly a bijective operator for every λ in C). A similar
privilege situation happens in the more general case that A is right alternative
(i.e., the equality yx2 = (yx)x holds for all x, y in A), as we see in the sequel. For
x in such an algebra A, the right alternative identity reads as Rx2 = (Rx)2, so
that, after linearization, we obtain Rxy+yx = RxRy+RyRx for all x, y in A. Now
take z in A, and define a sequence {zn} in A by z1 = z and zn+1 = 1

2 (zzn+znz).
It follows from an elementary induction that Rzn

= (Rz)n for every n in N, and
hence the analytic mapping ϕ : C → A defined by

ϕ(λ) := e +
∞∑

n=1

λn

n!
zn

satisfies ϕ(0) = e, ϕ′(0) = z, and Rϕ(λ) = exp(λRz). Therefore we can formulate
the result which follows.

PROPOSITION 4.4.- Problem 4.3 has an affirmative answer whenever A is
right alternative.

The following example shows that the privilege situation for the property
(Pz) occurring in the right alternative setting cannot be expected in general.

EXAMPLE 4.5.- Let A be the unital Jordan complex algebra whose vector
space is C3 and whose product is defined by

(x1, x2, x3)(y1, y2, y3) := ( x1y1 + x2y2 , x1y2 + x2y1, x1y3 + x3y1 ) .

A straightforward calculation shows that, for x = (x1, x2, x3) in A, the equality
det(Rx) = x1(x2

1−x2
2) holds. Let us fix z = (z1, z2, z3) in A satisfying (P∗x), so

that there are complex valued entire functions ϕ1, ϕ2, ϕ3 satisfying ϕ1(0) = 1,
ϕ2(0) = ϕ3(0) = 0, ϕ′i(0) = zi for i = 1, 2, 3, and ϕ1(λ)(ϕ1(λ)2 − ϕ2(λ)2) 6= 0
for all λ in C. Since ϕ1(λ) 6= 0 for every λ in C, and the mapping λ → ϕ2(λ)

ϕ1(λ)
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is an entire function which does not take the values 1 and −1, it follows from
Picard’s theorem [20; Theorem 16.22] that there exists a constant c such that
ϕ2(λ) = cϕ1(λ) for every λ in C. Now, we have c = cϕ1(0) = ϕ2(0) = 0, so
ϕ2 = 0, and so z2 = ϕ′2(0) = 0. In this way, the (closed) linear hull of the set

{z ∈ A : z satisfies (P∗z )}

is not the whole algebra A.

According to the above example, the refinement of LePage’s argument made
in this paper (by considering Property (Pz) instead of (P∗z ) becomes crucial
when we want to remove associativeness in the classical results.

Now that we have discussed about the proof of Theorem 1.1, let us do the
same in relation to Theorem 2.2. We begin by noting that the key idea in
the proof of the last quoted theorem is nothing but a simplified version of the
following claim.

CLAIM 4.6.- Let A be a complete normed complex algebra with a right unit
e, let � be a right e-admissible product on A such that the inequality

‖ x� y ‖≤ k ‖ xy ‖

holds for some positive constant k and all x, y in A, and let z be in A satis-
fying (Pz) (respectively (P∗z ) relative to the product �. Then z satisfies (Pz)
(respectively (P∗z ) relative to the canonical product of A.

Proof.- Chose a couple (Ω, ϕ), where Ω is the complement in C of a countable
compact set satisfying 0 ∈ Ω, and ϕ : Ω → A is an analytic mapping such that
ϕ(0) = e, ϕ′(0) = z, and the operator R�ϕ(λ) is bijective for every λ in Ω. Then,
for every x in A and every λ in Ω, we have

‖ x ‖ ≤ ‖ (R�ϕ(λ))
−1 ‖‖ R�ϕ(λ)(x) ‖ ≤ k ‖ (R�ϕ(λ))

−1 ‖‖ Rϕ(λ)(x) ‖ .

Therefore, for every λ in Ω, the operator Rϕ(λ) is bounded below. Now consider
the set

Ω′ := {λ ∈ Ω : Rϕ(λ) is bijective} ,

and assume that Ω′ 6= Ω. Then, since Ω′ is non empty (indeed, Rϕ(0) is the
identity mapping on A) and Ω is connected, there must exist some λ0 in the
boundary of Ω′ relative to Ω. For such a λ0, Rϕ(λ0) lies in the boundary of
the set of all invertible elements of BL(A), and hence, by [1; Lemma 56.3 and
Theorem 57.4], it is not bounded below. This is a contradiction. �

The claim just proved, together with the previous discussion about the proof
of Theorem 1.1, leads to the next result.
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PROPOSITION 4.7.- Problem 4.2 has an affirmative answer whenever the
product � is right alternative.

Given a complex algebra A and a complex number λ, the λ-mutation of A
is defined as the algebra consisting of the vector space of A and the product

(x, y) → λxy + (1− λ)yx .

Note that, if the algebra A has a unit e, then e remains a unit in any mutation
of A.

COROLLARY 4.8.- Problem 4.1 has an affirmative answer if A has a right
alternative mutation (for instance, if A+ is associative).

Proof.- By assumption, there exists λ in C such that the product � on A
defined by x�y := λxy+(1−λ)yx is right alternative. If λ = 1, then the result
follows from Proposition 4.4. Otherwise, since for x, y in A we have

‖ x� y ‖ ≤ (| λ | +k | 1− λ |) ‖ xy ‖ ,

the result follows from Proposition 4.7. �

A complex algebra is said to be split quasiassociative if it is a mutation of a
complex associative algebra.

COROLLARY 4.9.- Problem 4.1 has an affirmative answer whenever A is
split quasiassociative.

Proof.- Choose an associative product � on A and λ in C satisfying

xy = λx� y + (1− λ)y � x

for all x, y in A. If λ = 1
2 , then A is obviously commutative. Otherwise, putting

µ := λ(2λ− 1)−1, we have

x� y = µxy + (1− µ)yx

for all x, y in A. Therefore A has an associative mutation, and Corollary 4.8
applies. �

REMARK 4.1O.- A prime complex algebra A is said to be centrally closed
if, for every non zero ideal M of A and for every linear mapping f : M → A
satisfying f(ax) = af(x) and f(xa) = f(x)a for all x in M and a in A, there
exists λ in C such that f(x) = λx for all x in M . According to the main result
in [22], if A is a centrally closed prime nondegenerate non-commutative Jordan
complex algebra, then at least one of the following assertions hold:
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1. A is commutative.

2. A is quadratic.

3. A+ is associative.

4. A is split quasiassociative.

Now, it follows from Corollaries 2.3, 4.8, and 4.9 that Problem 4.1 has an affir-
mative answer if A is a centrally closed prime non degenerate non-commutative
Jordan algebra. We note that complete normed primitive non-commutative
Jordan complex algebras are prime, nondegenerate, and centrally closed [19].

With the above remark, the discussion of the proof of Theorem 2.2 is con-
cluded.

Now, let us point out that the original LePage’s technique can be easily
adapted to provide further interesting developments in the non-associative set-
ting. A first sample of this procedure is shown in the following proposition.
Recall that an algebra A is called power-associative if every one-generated sub-
algebra of A is associative. Non-commutative Jordan algebras are examples of
power-associative algebras [21; p. 141].

PROPOSITION 4.11.- Let A be a complete normed power-associative com-
plex algebra with a unit. Then A is associative if (and only if) there exists k > 0
satisfying ‖ x(yz) ‖≤ k ‖ (xy)z ‖ for all x, y, z in A.

Proof.- For λ in C and x, y, z in A, we have

‖ exp(λx)[(exp(−λx)y)z] ‖ ≤ k ‖ [exp(λx)(exp(−λx)y)]z ‖

≤ k ‖ exp(λx)(exp(−λx)y) ‖‖ z ‖ ≤ k2 ‖ y ‖‖ z ‖ .

Therefore the analytic mapping

λ → exp(λx)[(exp(−λx)y)z] = yz + λ[x(yz)− (xy)z] + ...

from C to A is bounded, and hence constant. It follows x(yz)− (xy)z = 0. �

Other non-associative applications of LePage’s technique follow from the
next general result.

PROPOSITION 4.12.- Let A be a complete normed non-commutative Jordan
complex algebra with a unit e, and P : A → BL(A) a quadratic mapping such
that Pe = 1 (the identity mapping on A) and ‖ Px(y) ‖≤ k ‖ Ux(y) ‖ for some
k > 0 and all x, y in A. Then P = U .

Proof.- For λ in C and x in A, exp(λx) is an invertible element of A, and
hence Uexp(λx) is a bijective operator [10; Theorem 13, p. 52], so that, by the
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assumed inequality, we have ‖ Pexp(λx) ◦ U−1
exp(λx) ‖≤ k. Let x be in A. Then

the mapping λ → Pexp(λx) ◦U−1
exp(λx) from C to BL(A) is analytic and bounded,

and hence the equality
Pexp(λx) = Uexp(λx)

holds for every λ in C (since Pe = 1). Now, computing first and second deriva-
tives at λ = 0, and combining the two resulting equalities, we find Px = Ux .
�

Recall that an algebra A is called alternative if the identities x2y = x(xy)
and yx2 = (yx)x hold for all x, y in A. Actually, in an alternative algebra, all
two-generated subalgebras are associative [21; p. 29]. By taking in Proposition
4.12 Px(y) := xyx, Px(y) := x2y, and Px(y) := 2x(xy) − x2y, and applying
well-known identities in non-commutative Jordan and alternative algebras, we
find Assertions 1, 2, and 3, respectively, in the corollary which follows.

COROLLARY 4.13.- Let A be a complete normed non-commutative Jordan
complex algebra with a unit. Then we have:

1. A is alternative if (and only if) there exists k > 0 satisfying

‖ xyx ‖≤ k ‖ Ux(y) ‖

for all x, y in A.

2. A is associative and commutative if (and only if) there exists k > 0 satis-
fying ‖ x2y ‖≤ k ‖ Ux(y) ‖ for all x, y in A.

3. A is commutative if (and only if) there exists k > 0 satisfying

‖ 2x(yx)− x2y ‖≤ k ‖ Ux(y) ‖

for all x, y in A.

We conclude this section with an easy observation providing a non-unital
LePage’s type result for some normed alternative algebras. Let A be a real or
complex alternative algebra. For x in A, the operator Ux has a very simple form,
namely we have Ux(y) = xyx for every y in A. Moreover A is non-degenerate
(i.e., Ux = 0 implies x = 0) if (and only if) it is semiprime (i.e., if M is an ideal
of A, and if M2 = 0, then M = 0) [24; Theorem 9.2.5]. Now, assume that the
alternative algebra A is normed. Then the condition

m ‖ x ‖2≤‖ Ux ‖ for some positive constant m and every x in A (#)

becomes a natural analytic strengthening of semiprimeness. It is easily shown
that the above condition is equivalent to the fact that every normed ultrapower

16



of A is semiprime. Therefore we say that the normed alternative algebra A is
ultra-semiprime whenever A satisfies (#).

OBSERVATION 4.14.- Let A be an ultra-semiprime normed alternative com-
plex algebra such that there exists k > 0 satisfying ‖ yx ‖≤ k ‖ xy ‖ for all x, y
in A. Then A is commutative.

Proof.- For x, y in A we have

‖ Ux(y) ‖ = ‖ xyx ‖ ≤ k ‖ x2y ‖ ≤ k ‖ x2 ‖‖ y ‖ ,

and hence ‖ Ux ‖ ≤ k ‖ x2 ‖ . Now let m > 0 be such that m ‖ x ‖2 ≤ ‖ Ux ‖
for every x in A. Then, again for every x in A, the inequality m ‖ x ‖2 ≤ k ‖
x2 ‖ holds. By [17; Proposition 31], A is commutative (note that the assumption
in [17] that A has a unit is unnecessary). �

Looking at the proof of Observation 3.1 we see that, if A is a C∗-algebra, then
for every x in A we have ‖ Ux ‖=‖ x ‖2, and therefore C∗-algebras are ultra-
semiprime. The same is true in the more general case of the so-called alternative
C∗-algebras, for which the reader is referred to [3] and [15]. Since alternative
C∗-algebras are non-commutative JB∗-algebras [15; Proposition 1.3], Observa-
tion 4.14 provides us with a very easy proof of Corollary 3.5 in the particular
case that A is an alternative C∗-algebra.

5.- A refinement of LePage’s associative theorem

This concluding section is devoted to Banach algebras (i.e., complete normed
associative algebras). Our approach begins with the next proposition.

PROPOSITION 5.1.- Let A be a complex Banach algebra, E a complex Ba-
nach space, and h : A×A → E a bilinear mapping satisfying

‖ h(x, y) ‖≤ k ‖ xy ‖

for some positive constant k and all x, y in A. Then, for all x, y, z in A, we
have h(xy, z) = h(x, yz).

Proof.- Let x, y, z be in A. For λ in C, we can consider exp(λy) and exp(−λy)
as elements of the unital hull of A, so that x exp(λy) and exp(−λy)z lie in A.
Therefore we have ‖ h(x exp(λy), exp(−λy)z) ‖≤ k ‖ xz ‖. The Liouville theo-
rem leads to h(x exp(λy), exp(−λy)z) = h(x, z), and hence h(xy, z)−h(x, yz) =
0 (by computing derivatives at λ = 0). �

Taking in Proposition 5.1 E = A and h(x, y) = yx, we obtain:
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COROLLARY 5.2.- Let A be a complex Banach algebra satisfying

‖ yx ‖≤ k ‖ xy ‖

for some positive constant k and all x, y in A. Then A2 is contained in the
centre C(A) of A.

Let A be as in the above corollary. It follows that, if A2 is dense in A, then
A is commutative. Another not so clear consequence is provided by the next
corollary. The annihilator Ann(A) of an algebra A is defined as the set of those
elements x in A satisfying xA = Ax = 0.

COROLLARY 5.3.- Let A be a complex Banach algebra satisfying

‖ yx ‖≤ k ‖ xy ‖

for some positive constant k and all x, y in A. If Ann(A) = 0, then A is
commutative.

Proof.- By Corollary 5.2, it is enough to show that the conditions A2 ⊆ C(A)
and Ann(A) = 0 imply that A is commutative. But, applying the first condition,
for x, y, z, t in A we have

0 = [xyz, t] = xy[z, t] + [xy, t]z = xy[z, t]

(here [., .] stands for the commutator on A). Therefore

[A,A]A2 = A[A,A]A = A2[A,A] = 0 ,

and hence [A,A]A and A[A,A] are contained in Ann(A). Now, applying twice
the second condition, it follows [A,A] = 0. �

After Corollary 5.3, we realize that Observation 4.14 is not an interesting
fact when applies in particular to associative algebras. However, the general
assertion made in that observation for alternative algebras is independent of the
above corollary. This is so because, as the next example shows, Corollary 5.3
does not remain true if the associativeness of A is relaxed to the alternativeness.

EXAMPLE 5.4.- Let A be the complex algebra whose vector space is C7 and
whose product is defined by

(x1, x2, x3, x4, x5, x6, x7)(y1, y2, y3, y4, y5, y6, y7) :=

(0, 0, 0, x1y2−x2y1, x1y3−x3y1, x2y3−x3y2, x1y6−x6y1+x5y2−x2y5+x3y4−x4y3).

Then A is alternative and the equality Ann(A) = 0 holds. Moreover, for every
algebra norm ‖ . ‖ on A and all x, y in A we have ‖ xy ‖=‖ yx ‖ (since A is
anticommutative).
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The algebra in the above example also shows that in Corollary 5.2 the as-
sociativeness of A cannot be relaxed to the alternativeness. Indeed, in the
alternative anticommutative algebra A of the example we have

(0, 0, 1, 0, 0, 0, 0)((1, 0, 0, 0, 0, 0, 0)(0, 1, 0, 0, 0, 0, 0)) = (0, 0, 0, 0, 0, 0, 1) ,

and therefore elements of A2 need not commute with all elements of A. This
remark is far from being anecdotist because every counterexample to the al-
ternative generalisation of Corollary 5.3 must be also a counterexample to the
alternative generalisation of Corollary 5.2. This follows from the fact (not too
easy to show) that, if A is an alternative algebra over a field of characteristic
different from 2 and 3, if Ann(A) = 0, and if every element in A2 commutes
with all elements of A, then A is commutative.

Let L denote the class of complex Banach algebras A satisfying

‖ yx ‖≤ k ‖ xy ‖

for some positive constant k and all x, y in A. If a complex Banach algebra A
is the direct sum of a closed commutative ideal and a closed anticommutative
ideal, then certainly A is a member of L. However, as the following example
shows, there are members of L of a more complicated nature.

EXAMPLE 5.5.- Consider the associative complex algebra A whose vector
space is C5 and whose product is defined by

(x1, x2, x3, x4, x5)(y1, y2, y3, y4, y5) := (x2y3 − y2x3, 0, 0, 0, x2y4 + y2x4) .

Then A (endowed with any algebra norm) is a member of L. Moreover, it is
easily seen that A cannot be expressed as a direct sum of a commutative ideal
and an anticommutative ideal.

The next example shows that the necessary condition A2 ⊆ C(A) for A to
be a member of L, provided by Proposition 5.1, is far from being sufficient.

EXAMPLE 5.6.- Given λ in C, consider the associative complex algebra A
whose vector space is C3 and whose product is defined by

(x1, x2, x3)(y1, y2, y3) := (0, 0, x1y2 + λx2y1) .

Since A3 = 0, certainly the inclusion A2 ⊆ C(A) holds. Assume that for some
algebra norm ‖ . ‖ on A there is k > 0 satisfying ‖ yx ‖≤ k ‖ xy ‖ whenever
x, y are in A. Then, for all complex numbers x1, x2, y1, y2 we have

| y1x2 + λy2x1 |≤ k | x1y2 + λx2y1 | .

Taking x1 = x2 = y1 = 1 and y2 = −λ, we obtain 1−λ2 = 0, and hence λ = ∓1.
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We conclude the paper by noting that some results in Section 4 can be
reformulated in terms of Banach algebras. Indeed, Corollary 4.9 ensures that,
if A is a complex Banach algebra with a unit, and if there exist λ ∈ C\{ 1

2}
and k > 0 satisfying ‖ λyx + (1 − λ)xy ‖≤ k ‖ λxy + (1 − λ)yx ‖ for all
x, y in A, then A is commutative. Also, as a consequence of Corollary 4.8 we
obtain that, if A is a commutative complex Banach algebra with a unit e, and
if � is a continuous anticommutative product on A satisfying x � e = 0 and
‖ xy − x � y ‖≤ k ‖ xy + x � y ‖ for some k > 0 and all x, y in A, then the
product � is identically zero.

Acknowledgements.- The authors express their gratitude to B. Aupetit
for fruitful discussions about Theorem 1.1. Actually Aupetit’s indications have
allowed them to prove the present formulation of that theorem, which refines a
weaker result in an early version of the paper.
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